Discrete Mathematics Quiz 3
 2021－2022 春夏学期 郑文庭班

Shd0wash

2023年6月1日

1．Find the transitive closure of R on $\{a, b, c, d\}$ ，
where $R=\{(a, a),(b, a),(b, c),(c, a),(c, c),(c, d),(d, a),(d, c)\} .(6 \%)$
2.
（a）Find the smallest partial order relation R on $\{a, b, c, d, e, f\}$ that contains $(a, c),(c, c),(c, b),(c, d),(b, e),(b, f)$ ．
（b）Draw the Hasse diagram of R ．
（c）List the maximal elements．
（d）List the minimal elements．
（e）Find the greatest element．
（f）Find the least element．
（g）Find the least upper bound of $\{d, e\}$ ．
（h）Use topological sorting to order the elements of the poset．（24\％）

3．Find a minimum spanning tree for the weighted graph in Fig．1．You can just draw out the answer． （6\％）

图 1：Fig． 1

4．Use Dijkstra＇s Algorithm to find the shortest path length between the vertices 1 and 6 in the weighted graph in Fig．2．（10\％）

图 2：Fig． 2

5．Use Huffman coding to encode these symbols with given frequencies：a： $0.15, \mathrm{~b}: 0.22, \mathrm{c}: 0.26, \mathrm{~d}: 0.19$ ， e： $0.08, \mathrm{f}: 0.1$ ．What is the average number of bits required to encode a character？（8\％）

6．Determine all positive integers r and s for which $\mathrm{K}_{r, s}$ is planar．Explain your answer．（8\％）

7．In a round－robin tournament every player plays every other player exactly once and each match has a winner and a loser．There are total n players．Prove that we can sort the players in a certain order $p_{1}, p_{2}, \ldots, p_{n}$ ，so that p_{1} beats p_{2}, p_{2} beats p_{3}, \ldots ，and p_{n-1} beats $p_{n} .(10 \%)$

8．Fig． 3 is the Petersen graph．（28\％）
（a）Find the chromatic number of the Petersen graph．
（b）Determine whether the graph in Fig． 4 is also a Petersen graph．
（c）Prove that the Petersen Graph is non－planar using Euler＇s formula．
（d）Determine whether the Petersen graph is Hamilton graph．Prove or disprove it．

图 3：Fig． 3

图 4：Fig． 4

