Discrete Mathematics Quiz 2
 2022－2023 春夏学期

Shd0wash

2023年6月1日

1．$(31 \%$ total $)$
（a）Find the next larger permutation in lexicographic order after 276154389．（4\％）
（b）Find the next 5 －combination of the set $\{1,2,3,4,5,6,7,8,9\}$ after $\{1,3,5,7,9\}$ ．（4\％）
（c）Find $3^{2023} \bmod 1997 .(4 \%)$
（d）Find the value of $\binom{-3}{4}$ ．（4\％）
（e）Use the construction in the proof of the Chinese remainder theorem to find all solutions to the system of congruences $x \equiv 1(\bmod 2), x \equiv 2(\bmod 3), x \equiv 3(\bmod 5), x \equiv 4(\bmod 7)$ ．(5%)
（f）Find the coefficient of $x^{6} y^{4}$ in the expansion of $(x / 3-2 / x+y)^{12}$ ．(5%)
（g）Write the first 6 terms of the sequence determined by the generating function：$(1-x) /(1+x)$ ．(5%)

2．$(32 \%$ total， 4% each $)$
（a）How many ways are there to distribute 4 balls into 6 boxes，both the balls and boxes are labeled？
（b）How many ways are there to distribute 4 balls into 6 boxes，if each box must have at most one ball in it，and the balls are unlabeled but the boxes are labeled？
（c）How many ways are there to distribute 6 balls into 6 boxes，both the balls and boxes are labeled，and no box is empty？
（d）How many ways are there to distribute 6 balls into 6 boxes，both the balls and boxes are labeled，and exactly 3 boxes are not empty？
（e）How many ways are there to distribute 6 balls into 6 boxes，if the balls are unlabeled，but the boxes are labeled，and exactly 3 boxes are not empty？
（f）There 4 kinds of balls colored with Red，Green，Blue and White．The number of each kind is unlimited， and the balls with the same type are unlabeled．How many ways are there to distribute 6 balls into 6 labeled boxes，if there are one or more red balls among them and no box is empty？
（g）Given 4 kinds of balls，the number of each kind is unlimited and the balls with the same type are labeled．How many ways are there to distribute 6 balls into 6 labeled boxes，if there are exactly 3 kinds of balls and no box is empty？
（h）There are 3 kinds of balls，and each kind has 3 balls．the balls with the same type are unlabeled．How many ways are there to take out 6 balls？
3. Given 2023 cups numbered from 1 to 2023 , all are placed with opening upwards. Starting from $k=2$ to 2023 each time (that is: for $k=2 ; k<=2023 ; k++$), we invert all cups whose number is a multiple of k. Question: In the end, how many cups are still opening upwards? (7\%)
4. Find the solution to the following iteration relation: (10\%)

$$
a_{n}=4 a_{n-1}-3 a_{n-2}+2^{n}+1, a_{0}=1, a_{1}=3
$$

5. Let p be a prime number. Prove that there are infinite terms a_{k} in the sequence $1,11,111,1111, \ldots, 11 \ldots 1$. (a_{k} has k ' 1 's) such that $p \mid a_{k}$. (Hint: Fermat's little theorem) (10%)
6. Given any positive integer m, prove that a multiple of m can be found in the Fibonacci sequence. (10\%)
