Discrete Mathematics Quiz 1

2025-4-21

		Nama	Student Number		2025	1 21
			Student Number	/		
				Dy 5dbwat4		
1.	(35	5%) Determine v	whether the following statements are	true or false.		
	(5]	points for a corr	ect answer, 0 points for a blank answ	wer, -2 points for an incor	rect answei	r)
	a)	If x is not occu	arring in A, then $\exists x (P(x) \to A) \equiv \forall x$	$xP(x) \to A.$	()
	b)	If <i>A</i> , <i>B</i> , and <i>C</i> a	are sets, then $A - (B \cap C) = (A - B)$	$) \cup (A-C).$	()
	c)	If <i>n</i> is integer,	then $n = \left\lceil \frac{n}{2} \right\rceil + \left\lceil \frac{n}{2} \right\rceil$.		()
	d) Suppose $P(x, y)$ is a predicate and the universe for the variables x and y is {1,2,3,4}. Su					pose
	P(1,3), P(2,1), P(2,4), P(3,2), P(3,4), P(4,1), P(4,4) are true, and $P(x, y)$ is f				s false	
		otherwise. The	n the statement $\forall x \exists y ((x \le y) \land P(x))$	(x, y) is true.	()
	e)	$n^{0.01}$ is $O(\log_1 n)$	$_{.01}n)^{99999}$.		()
	f) The set of positive real numbers less than 1 with decimal representations consisting or				isting only c	of 0s
		and 1s is count	able.		()
	g)	$2025^{2026} \equiv 1$	(mod 2027).		()
2.	(12%) Write a proposition equivalent to $p \oplus q$,					
	a)	using only p, q	η , \neg , and the connective Λ .			

- b) using only *p*, *q*, and the connective | .("|" represents NAND 与非.)
- 3. (9%) Find the full conjunctive normal form of $(p \oplus q) \lor r$.
- 4. (8%) Build all the functions from $A = \{1,2\}$ to $B = \{a, b\}$ and point out which is bijection, and which is surjection.
- 5. (9%) If all the positive integers that are relatively prime with 77 are arranged into a strictly increasing sequence, find the 600*th* term of this sequence.
- 6. (9%) Use the construction in the proof of the Chinese remainder theorem to find all solutions to the system of congruences $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, and $x \equiv 3 \pmod{8}$.
- 7. (9%) Prove that the distributive law $A_1 \cup (A_2 \cap \dots \cap A_n) = (A_1 \cup A_2) \cap \dots \cap (A_1 \cup A_n)$ is true for all n > 2.
- 8. (9%) Prove that every positive integer (n > 2) can be expressed as the sum of different Fibonacci numbers.