1708789997
人工智能引论 ¶
Note
22 级开始从人工智能基础改名为了人工智能引论。原来的人工智能基础仍开课,面向的是非图灵班的同学(两门课教的内容和考的都差不多,差不多就是计逻和数逻的关系)。
课程学习内容 ¶
围绕吴飞老师的《人工智能导论:模型与算法》这本书讲解人工智能的领域的一些基础知识:逻辑推理、搜索求解、监督学习、无监督学习、深度学习、强化学习、博弈论等内容。22 级这本书只是作为参考,期末出题主要根据 PPT 出。不过事实上 PPT 内容和这本书内容差不多,PPT 例子更多一些,以及相较于书删减了一些复杂的内容。听说之后会出一本新书作为教材。
课程内容看似较多,但实际要求掌握、考试考的基本都是概念,重点在于理解以及背书。会有 5-8 次实验(21 级是 7 次,22 级是 5 次),均使用 python 语言,设计较为不合理,基本达到实验目标即可,不用太深究。在课程改名为人工智能引论之后,实验数量减少了,并且不需要写实验报告,可以说是一大改进。22 级的 5 次实验具体为:
- 用深度优先搜索求解八皇后问题的所有解
- 使用蒙特卡洛搜索算法实现一个下黑白棋的 AI
- 使用 K-means 算法实现异常检测
- 实现对手写数字的识别和垃圾分类(这个 lab 看起来很难,但事实上代码全都写好了,只需要调参数)
- 使用 Deep Q-learning 算法实现自动走迷宫的机器人
以下是一份比较简略的课程(考试)大纲,其中有部分课程内容没有被包含,主要是 8-10 章的内容,也不保证之后的大纲与此相同,仅供参考。
建议在系统复习一遍后过一遍大纲,看看有没有遗漏的知识点或者说不出来的概念。
课程内容大纲
- 介绍人工智能的发展现状等基本概论
- 逻辑与推理
- 逻辑,与、或、异或,全称量词、存在量词的消去、引入,这部分与离散数学知识重合
- 知识图谱推理:三元组,两个对象 + 关系,
- FOIL 算法,路径排序算法
- 原子命题,复合命题
- 推理手段,推导过程,谓词逻辑(关系)
- 概率图 贝叶斯有向,马尔可夫无向,局部马尔可夫性,概率计算
- 因果,混淆偏差(前因)、选择偏差(后果),干预,反事实
- 搜索求解
- 状态、动作、状态转移、路径 / 代价
- 搜索算法的时空复杂度、完备性、最优性
- 搜索算法的启发函数、评价函数
- 贪婪搜索,A* 搜索,可容性、一致性
- minmax 对抗、\(\alpha-\belta\)剪枝
- 蒙特卡洛树搜索、\(\epsilon\)贪心,UCB1,上限置信区间算法
- 机器学习
- 有监督、无监督学习的区别
- 3 个集的区别:训练集、验证集、测试集
- 3 种损失函数:均方差,交叉熵,0-1 损失
- 2 种风险 ; 经验风险 , 期望风险
- 4 个率
- 准确率,错误率,精确率,召回率
- 精确率:被预测为 P 的里面真为 P 的
- 召回率:所有真 P 中被预测为 P 的
- F1 会算出来,精确率和召回率的调和平均
- logistic 非线性回归的计算,sigmoid,tanh,relu 的区别、特点
- k 均值聚类的步骤
- LDA 与 PCA 的区别与对比
- eigenface 的流程
- 深度学习
- 感知机与深度神经网络,全连接、反向传播、梯度下降
- Relu, sigmoid, softmax
- 反推某个变量分的梯度,要会推,反传,链式法则
- 池化层,会计算池化后向量大小,局部感知,参数共享,选择性感受野
- 梯度消失、梯度爆炸
- 循环神经网络,长短时记忆模型 LSTM
- 注意力,自注意力机制
- 正则化、过拟合、dropout
- 词向量的生成
- 强化学习
- 价值和奖励的区别辨析
- 监督学习、无监督学习、强化学习的横向对比
- 单步 vs 序贯性
- 离散马尔科夫链
- 奖励机制,折扣因子
- MDP 马尔可夫决策过程
- 轨迹、分段、持续问题、片段
- 策略函数、价值函数、动作 - 价值函数,贝尔曼方程
- 基于策略的和基于价值的强化学习区别
- DP 算法,蒙特卡洛算法、TD 算法
- Q 学习,怎样更新 Q 值,探索和利用
- DQN 引入的新机制
- actor-critic 算法
- 人工智能博弈
- 囚徒困境、最优解
- 纳什均衡。期望收益相同
- 虚拟遗憾最小化算法,例子:石头剪刀布
- 双边匹配,单边匹配
授课老师 ¶
老师人很好,尽管 22 级每次到课人数都是个位数还是把出勤分都给大家算满了,并且说如果对这门课 / 老师有什么意见欢迎跟她提出(虽然大概是没有人去提的)。讲课基本是在读 PPT。给分比较好,只要实验正常完成,平时分就能拿到比较高的分数。
上课是很认真地读 ppt,老师是教材的作者,因此对教授内容有自己比较详尽的解释,但语音语调挺催眠的。又因为 ppt 上教的和实验关系不大,会出现听懂了课上讲的内容但做实验摸黑的情况,且课上会时不时冒出“新书是怎么写出来的”“我的一个学生怎么怎么样”的题外话,所以大家不怎么爱听课。
整个学期点了两次名(一个一个叫名字,非电子点名,不会提前提醒),算入考勤分。实验分好像是根据实验网站的的一套评分逻辑给的,比如说黑白棋会根据和 ai 对战,以及学生的作业互相对战的结果评分。期末题考概念,所以答案比较确定,判卷应该没怎么放水。
杨易老师是国际上很有名的人工智能领域专家,有许多研究成果。他的课虽然挂名是杨老师,但是在 23-24 秋冬学期的 16 周课程中,本人只来上了 3 周的课(可能是因为比较忙),剩下的部分是其学生朱霖潮老师来讲授。总的来说,杨易老师讲课风趣幽默、引人入胜,朱霖潮老师讲课严谨认真、互动性强(实际上是他希望有互动,因为单纯讲课效果略催眠)。
在 23-24 秋冬学期的课程中,杨老师的课只正式点过(计入考核)一次名,是在倒数第三节课时提前提醒的,平常几乎不点名,同时实验课的助教也比较负责。期末考试之前会有一至两节复习课,给分方面反馈普遍还不错。
分数构成 ¶
出勤(5%)+ 实验(35%)+ 期末考试(60%)
参考笔记 ¶
- 中国大学 mooc 上「人工智能导论:模型与算法」课程测试题与答案:https://blog.csdn.net/a66666_/article/details/105123032
- xg 的复习笔记(都是概念抄书):https://note.tonycrane.cc/cs/ai/basic/
学习建议 ¶
实验建议不要拖 ddl,尽早完成。实验设计基本都不怎么合理,体现在无从下手、测试不全等等方面。遇到问题了找助教或者和同学们讨论讨论。完成目标就可以了,不需要深究,不必要求结果达到完美,没必要在这种课程这种实验上浪费太多时间。
22 级期末考试是填空(40)+ 单选(30)+ 简答(30)。填空题 1 分一个共 40 个,基本就是 PPT 上的一段文字挖空填,会给备选项,类似完形填空;单项选择题 1.5 分一个共 20 个;大题 5 分一个共 6 个。可以说考察的大部分是概念,有少部分计算但并不困难,有不少是 PPT 上面的例子,复习的时候需要特别注意。总体而言考察的很均匀,无论是填空选择还是大题,基本上考试范围内的每一章的重点都会考。难度不高,主要是看书记概念。如果想要拿到还过得去的分数,PPT 还是需要认真过一遍,熟悉重要的概念和 PPT 上面的例子。98 上面有 22 级的历年卷回忆,可以拿来检查一下自己复习的效果。
笔者和同学注意到黄正行老师在 22 级人工智能基础的最后一节复习课上有划重点,并附带部分真题讲解,因为这两门课差不多,所以可以在期末周的时候关注一下。考试题型和上面参考资料中的 mooc 的题目有一定相似度,也可以参考。